Doctor Biehl

Osteoporosis

osteoporosis of spineOsteoporosis

It is estimated that 1 in 3 women and 1 in 12 men over the age of 50 worldwide have osteoporosis. It is responsible for millions of fractures annually, mostly involving the lumbar vertebrae, hip, and wrist. Hip fractures are responsible for the most serious consequences of osteoporosis. In the United States, osteoporosis causes a predisposition to hip fractures -- more than 250,000 occur annually. It is estimated that a 50-year-old white woman has a 17.5% lifetime risk of fracture of the proximal femur. The incidence of hip fractures increases each decade from the sixth through the ninth for both women and men for all populations. An estimated 700,000 women have a first vertebral fracture each year. The lifetime risk of a clinically detected symptomatic vertebral fracture is about 15% in a 50-year-old white woman. However, because symptoms are often overlooked or thought to be a normal part of getting older, it is believed that only about one-third of vertebral compression fractures are actually diagnosed. Distal radius fractures, usually of the Colles type, are the third most common type of osteoporotic fractures. In the United States, the total annual number of Colles' fractures is about 250,000. The lifetime risk of sustaining a Colles' fracture is about 16% for white women. By the time women reach age 70, about 20% have had at least one wrist fracture.

Osteoporosis is a disease of bone - leading to an increased risk of fracture. In osteoporosis the bone mineral density (BMD) is reduced, and bone microarchitecture is disrupted. This can lead to micro fractures and the well known kyphosis seen in elderly women that occur over time. Osteoporosis is defined by the World Health Organization (WHO) in women as a bone mineral density 2.5 standard deviations below peak bone mass (20-year-old sex-matched healthy person average) as measured by DEXA scan. Osteoporosis is most common in women after the menopause, when it is called postmenopausal osteoporosis, but may develop in men and premenopausal women in the presence of particular hormonal disorders and other chronic diseases or as a result of smoking and medications, specifically glucocorticoids. Osteoporosis can be prevented with a healthy lifestyle and medication such as bisphosphonates (Fosamax).

Signs and Symptoms
Osteoporosis itself has no specific symptoms; its main consequence is the increased risk of bone fractures. Osteoporotic fractures are those that occur in situations where healthy people would not normally break a bone; they are therefore regarded as fragility fractures. Typical fragility fractures occur in the vertebral column, hip and wrist. The symptoms of a vertebral collapse "compression fracture" are acute back pain, often with radiculopathic pain (shooting pain due to compression of a nerve). Multiple vertebral fractures lead to a stooped posture, loss of height, and chronic pain with resultant reduction in mobility. Fractures of the long bones acutely impair mobility and may require surgery. Hip fracture, in particular, usually requires prompt surgery, as there are serious risks associated with a hip fracture, such as deep vein thrombosis and a pulmonary embolism, and increased mortality. The increased risk of falling associated with aging leads to fractures of the wrist, spine and hip. The risk of falling, in turn, is increased by impaired eyesight due to any cause, balance disorder, movement disorders (e.g. Parkinson's disease), dementia, and sarcopenia (age-related loss of skeletal muscle). Risk factors for osteoporotic fracture can be split between non-modifiable and modifiable. In addition, there are specific diseases and disorders in which osteoporosis is a recognized complication. Medication use is theoretically modifiable, although in many cases the use of medication that increases osteoporosis risk is unavoidable.
The most important nonmodifiable risk factors for osteoporosis are:
Advanced age,being female, estrogen deficiency following menopause (for women) and a decrease in testosterone levels (for men). While osteoporosis occurs in people from all ethnic groups, European or Asian ancestry predisposes for osteoporosis. Those with a family history of fracture or osteoporosis are at an increased risk; the heritability of the fracture as well as low bone mineral density are relatively high, ranging from 25 to 80 percent. There are at least 30 genes associated with the development of osteoporosis. Those who have already had a fracture are at least twice as likely to have another fracture compared to someone of the same age and sex
Potentially modifiable risks include:
Tobacco smoking - tobacco smoking inhibits the activity of osteoblasts (the cells that make new bone).
Low body mass index - being overweight protects against osteoporosis, either by increasing load or through the hormone leptin.
Low calcium and vitamin D intake - calcium and/or vitamin D deficiency from malnutrition increases the risk of osteoporosis. The problem occasionally arises in calcium deficient adolescents.
Alcoholism
Insufficient physical activity - bone performs remodeling in response to physical stress. People who remain physically active throughout life have a lower risk of osteoporosis. The kind of physical activity that have most effects on bone are weight bearing exercises. The bony prominences and attachments in runners are different in shape and size than those in weightlifters. Physical activity has its greatest impact during adolescence, affecting peak bone mass most. In adults, physical activity helps maintain bone mass, and can increase it by 1 or 2%. Physical fitness in later life is associated more with a decreased risk of falling than with an increased bone mineral density. Conversely, people who are bedridden are at a significantly increased risk.
Excess physical activity - excessive exercise can lead to constant damages to the bones which can cause exhaustion of the structures as described above. There are numerous examples of marathon runners who developed severe osteoporosis later in life. In females, heavy exercise leads to amenorrhea (suppression of the menstrual cycle), which is associated with decreased estrogen levels.
Heavy metals - a strong association between cadmium, lead and bone disease has been established. Low level exposure to cadmium is associated with an increased loss of bone mineral density readily in both genders, leading to pain and increased risk of fractures, especially in elderly and in females. Higher cadmium exposure results in osteomalacia (softening of the bone).
Soft drinks - some studies indicate that soft drinks (many of which contain phosphoric acid) may increase risk of osteoporosis; others suggest soft drinks may displace calcium-containing drinks from the diet rather than directly causing osteoporosis.

Diseases and disorders
There are many disorders associated with osteoporosis:
Hypogonadal states - Turner syndrome, Klinefelter syndrome, Kallmann syndrome, anorexia nervosa, hypothalamic amenorrhea, hyperprolactinemia. In females, the effect of hypogonadism is mediated by estrogen deficiency. It can appear as early menopause (<45 years) or from prolonged premenopausal amenorrhea (>1 year). A bilateral oophorectomy (surgical removal of the ovaries) or a premature ovarian failure cause deficient estrogen production. In males, testosterone deficiency is the cause.
Other endocrine disorders - Cushing's syndrome, hyperparathyroidism, thyrotoxicosis, hypothyroidism, insulin-dependent diabetes mellitus, acromegaly, adrenal insufficiency
Nutritional and gastrointestinal disorders - malnutrition, parenteral nutrition, malabsorption syndromes (e.g. coeliac disease, Crohn's disease), gastrectomy, severe liver disease (especially primary biliary cirrhosis) - those with an otherwise adequate calcium intake can develop osteoporosis due to the inability to absorb calcium.
Rheumatologic disorders - rheumatoid arthritis, ankylosing spondylitis
Hematologic disorders/malignancy - multiple myeloma, lymphoma and leukemia, mastocytosis, hemophilia, thalassemia.
Inherited disorders of the bone - osteogenesis imperfecta, Marfan syndrome, hemochromatosis, hypophosphatasia, glycogen storage diseases, homocystinuria, Ehlers-Danlos syndrome, porphyria, Menkes' syndrome, epidermolysis bullosa, Gaucher's disease.
Other disorders - immobilization, scoliosis

Medication
Medication - for medication potentially causing osteoporosis, the positive effects of them needs to be compared with the degenerative effects on bone.
Steroid-induced osteoporosis (SIOP) arises due to use of glucocorticoids - analogous to Cushing's syndrome and involving mainly the axial skeleton. The synthetic glucocorticoid prescription drug prednisone is a main candidate after prolonged intake. Some professional guidelines recommend prophylaxis in patients who take the equivalent of more than 30 mg hydrocortisone (7.5 mg of prednisolone), especially when this is in excess of three months.
Barbiturates (probably due to accelerated metabolism of vitamin D) and some other enzyme-inducing antiepileptics.
Proton pump inhibitors - these drugs inhibit the production of stomach acid; it is thought that this interferes with calcium absorption.

Diagnosis
The diagnosis of osteoporosis is made on measuring the bone mineral density (BMD). The most popular method is dual energy X-ray absorptiometry (DXA or DEXA). In addition to the detection of abnormal BMD, the diagnosis of osteoporosis requires investigations into potentially modifiable underlying causes; this may be done with blood tests and X-rays. Depending on the likelihood of an underlying problem, investigations for cancer with metastasis to the bone, multiple myeloma, Cushing's disease and other above mentioned causes may be performed.
Dual energy X-ray absorptiometry (DXA, formerly DEXA) is considered the gold standard for the diagnosis of osteoporosis. Osteoporosis is diagnosed when the bone mineral density is less than or equal to 2.5 standard deviations below that of a young adult reference population. This is translated as a T-score. dexa scan reportThe World Health Organization has established the following diagnostic guidelines:
T-score -1.0 or greater is "normal"
T-score between -1.0 and -2.5 is "low bone mass" (or "osteopenia")
T-score -2.5 or below is osteoporosis
When there has also been an osteoporotic fracture (also termed "low trauma-fracture" or "fragility fracture"), defined as one that occurs as a result of a fall from a standing height, the term "severe or established" osteoporosis is used.

Screening
The US Preventive Services Task Force (USPSTF)] recommends that all women 65 years of age or older should be screened with bone densitometry.The Task Force recommends screening women 60 to 64 years of age who are at increased risk. The best risk factor for indicating increased risk is lower body weight (weight < 70 kg).
Clinical prediction rules are available to guide selection of women for screening. The Osteoporosis Risk Assessment Instrument (ORAI) may be the most sensitive strategy .The ORAI is available online at http://osteoed.org/tools.php?type=orai.
Regarding the screening of men, a cost-analysis study suggests that screening may be "cost-effective for men with a self-reported prior fracture beginning at age 65 years and for men 80 years and older with no prior fracture".


Pathogenesis
The underlying mechanism in all cases of osteoporosis is an imbalance between bone resorption and bone formation. In normal bone, there is constant matrix remodeling of bone; up to 10% of all bone mass may be undergoing remodeling at any point in time. The process takes place in bone multicellular units (BMUs) as first described by Frost in 1963. Bone is resorbed by osteoclast cells, after which new bone is deposited by osteoblast cells.
The three main mechanisms by which osteoporosis develops are an inadequate peak bone mass (the skeleton develops insufficient mass and strength during growth), excesive bone resorption and inadequate formation of new bone during remodeling. An interplay of these three mechanisms underlies the development of fragile bone tissue. Hormonal factors strongly determine the rate of bone resorption; lack of estrogen (e.g. as a result of menopause) decreases bone resorption as well as decreasing the deposition of new bone that normally takes place in weight-bearing bones. The amount of estrogen needed to suppress this process is lower than that normally needed to stimulate the uterus and breast gland. In addition to estrogen, calcium metabolism plays a significant role in bone turnover, and deficiency of calcium and vitamin D leads to impaired bone deposition; in addition, the parathyroid glands react to low calcium levels by secreting parathyroid hormone (parathormone, PTH), which increases bone resorption to ensure sufficient calcium in the blood. The role of calcitonin, a hormone generated by the thyroid that increases bone deposition, is less clear and probably less significant.
Trabecular bone is the sponge-like bone in the ends of long bones and vertebrae. Cortical bone is the hard outer shell of bones and the middle of long bones. Because osteoblasts and osteoclasts inhabit the surface of bones, trabecular bone is more active, more subject to bone turnover, to remodeling. Not only is bone density decreased, but the microarchitecture of bone is disrupted. The weaker spicules of trabecular bone break ("microcracks"), and are replaced by weaker bone. Common osteoporotic fracture sites, the wrist, the hip and the spine, have a relatively high trabecular bone to cortical bone ratio. These areas rely on trabecular bone for strength, and therefore the intense remodeling causes these areas to degenerate most when the remodeling is imbalanced.

Treatment
There are several types medication to treat osteoporosis. However, lifestyle changes are also important. Bisphosphonates are the main medication for treatment. However, newer drugs have appeared in the 1990s, such as teriparatide and strontium ranelate.
In osteoporosis, bisphosphonate drugs are prescribed. The most often prescribed bisphosphonates are presently sodium alendronate (Fosamax) 10 mg a day or 70 mg once a week, risedronate (Actonel) 5 mg a day or 35 mg once a week and or ibandronate (Boniva) once a month. Doctor Biehl has used Fosamax for patients for years and has had good success.

Nutrition
Calcium: The patient should include 1200 to 1500 mg of calcium daily either via dietary means (for instance, an 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. The body absorbs only about 500 mg of calcium at one time and so intake should be spread throughout the day.
A meta-analysis of randomized controlled trials concluded "Evidence supports the use of calcium, or calcium in combination with vitamin D supplementation, in the preventive treatment of osteoporosis in people aged 50 years or older. For best therapeutic effect, we recommend minimum doses of 1200 mg of calcium, and 800 IU of vitamin D (for combined calcium plus vitamin D supplementation)."
Vitamin D: Increasing vitamin D intake has been shown to reduce fractures up to twenty-five percent in older people, according to recent studies. Vitamin D deficiency causes muscle weakness. A meta-analysis of five clinical trials showed 800 IU of vitamin D per day (plus calcium) reduced the risk of falls by 22%. A different randomized, controlled study showed nursing home residents who took 800 IU of vitamin D per day (plus calcium) having a 72% reduction in the risk of falls. New vitamin D intake recommendations (National Osteoporosis Foundation, July 2007) are adults up to age 50, 400-800 IU daily and those over 50, 800 - 1,000 IU daily.
Excess protein: There are three elements relating to a person's levels of calcium: consumption, absorption, and excretion. High protein intake is known to encourage urinary calcium losses and has been shown to increase risk of fracture in research studies.
Others: There is some evidence to suggest bone density benefits from taking the following supplements (in addition to calcium and vitamin D): boron, magnesium, zinc, copper, manganese, silicon, strontium, folic acid, and vitamins B6, C, and K.This is weak evidence and quite controversial.

Exercise
Multiple studies have shown that aerobics, weight bearing, and resistance exercises can all maintain or increase BMD in postmenopausal women. Many researchers have attempted to pinpoint which types of exercise are most effective at improving BMD and other metrics of bone quality, however results have varied. One year of regular jumping exercises appears to increase the BMD and moment of inertia of the proximal tibia in normal postmenopausal women. Treadmill walking, gymnastic training, stepping, jumping, endurance, and strength exercises all resulted in significant increases of L2-L4 BMD in osteopenic postmenopausal women. Strength training elicited improvements specifically in distal radius and hip BMD.

 

 

| ©2007 Doctor Biehl LLC